RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2014

FIRST YEAR

Date : 28/05/2014 Time : 11 am - 1 pm PHYSICS (General) Paper : II

Full Marks : 50

[1]

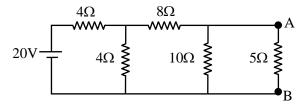
[1]

[3]

[2]

(Use a separate Answer Book for each group)

<u>Group – A</u>


Answer any two questions :

1.	a)	What is black body radiation? State some important properties of black body radiation.[1+2]	2]		
	b)	Define emissive power and absorptive power of a surface element. State Kirchhoff's law of thermal	-		
		radiation. [2+1			
	c)	State and explain Stefan-Boltzmann Law. Derive Newton's law of cooling under sutable approximation. [2+2	2]		
2.	a)	Write down the basic postulates of kinetic theory of gases.	3]		
	b)	Give the expression of pressure according to kinetic theory of gases. Hence deduce Dalton's law of			
		partial pressure. [1+2	2]		
	c)	Derive the expression of critical constants of a gas obeying van-der-Waals equation of state. [4]	-]		
3.	a)	State the law of equipartition of energy. [2	2]		
	b)	What do you mean by degrees of freedom(f) of a gas molecule? Find out the expression of γ in			
		terms of f. Hence find the value of γ for a diatomic gas. [2+3+1]		
	c)	Establish a relation between pressure and volume of an ideal gas undergoing reversible adiabatic			
		change. [2	2]		
4.	a)	Define internal energy. Write down the differential form of first law of thermodynamics. [2+1]		
	b)	Draw the Carnot cycle in $T - S$ diagram. Find out the efficiency of Carnot cycle. [1+4]		
	c)	State Carnot theorem. [2	2]		
		<u>Group – B</u>			
Answer any three questions :					
5.	a)	State Gauss' Divergence theorem in vector calculus. [2	2]		
	b)	What do you mean by divergence of a vector field?[2]	2]		
	c)	If a closed surface S enclose a volume V, then prove that $\oint_{s} \vec{r} \cdot d\vec{s} = 3V$. \vec{r} is position vector. [3]	;]		
	d)	If $\vec{v} = \vec{w} \times \vec{r}$, show that $\vec{w} = \frac{1}{2}$ curl \vec{v} . \vec{w} is a constant. [3]	;]		

- 6. a) Write down the differential form of Gauss' theorem.
 - b) What is the main characteristics of equipotential surface?
 - c) Show that electric field vector (\vec{E}) is irrotational in nature.
 - d) The electrostatic potential of a region is defined as v = 2x + 3y z. Calculate the potential gradient and field intensity over the region. [3]
 - e) Find the expression of the torque acting on an electric dipole in a uniform electric field.

- 7. a) An e.m.f (E) is applied to a series L R circuit. Discuss about the growth of current.
 - b) What do you mean by time constant of L R circuit?

c)

		Calculate the current through the 5Ω resistance using Norton's theorem in above circuit [4]
8.	a)	Discuss the nature of energy stored in an inductive circuit carrying a steady current? Find its magnitude. [1+3]
	b)	Define magnetic induction and magnetic flux. [2]
	c)	Calculate the magnetic induction at any point on the axis of a circular coil. [4]
9.	a)	What do you mean by Wattless current? Deduce an expression for it.[2+2]
	b)	Assuming the expression of current in series LCR circuit with an AC source, derive the resonance
		condition. [3]
	c)	A 200V, 50Hz supply is applied to a CR circuit. The power dissipation in the circuit is 150W, when the current is 2A. Calculate the capacitance and resistance of the circuit. [3]

[4]

[2]

80衆Q